Elements of Generative Manifold Learning for semi-supervised tasks
نویسندگان
چکیده
For many real-world application problems, the availability of data labels for supervised learning is rather limited. It is often the case that a limited number of labelled cases is accompanied by a larger number of unlabeled ones. This is the setting for semi-supervised learning, in which unsupervised approaches assist the supervised problem and viceversa. In this report, we outline some basic theoretical foundations of semi-supervised learning using models of the generative manifold-learning family.
منابع مشابه
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Semi-supervised learning methods using Generative Adversarial Networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to t...
متن کاملSEVEN: Deep Semi-supervised Verification Networks
Verification determines whether two samples belong to the same class or not, and has important applications such as face and fingerprint verification, where thousands or millions of categories are present but each category has scarce labeled examples, presenting two major challenges for existing deep learning models. We propose a deep semisupervised model named SEmi-supervised VErification Netw...
متن کاملLearning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks
We propose discriminative adversarial networks (DAN) for semi-supervised learning and loss function learning. Our DAN approach builds upon generative adversarial networks (GANs) and conditional GANs but includes the key differentiator of using two discriminators instead of a generator and a discriminator. DAN can be seen as a framework to learn loss functions for predictors that also implements...
متن کاملGenerative Manifold Learning for the Exploration of Partially Labeled Data
In many real-world application problems, the availability of data labels for supervised learning is rather limited and incompletely labeled datasets are commonplace in some of the currently most active areas of research. A manifold learning model, namely Generative Topographic Mapping (GTM), is the basis of the methods developed in the thesis reported in this paper. A variant of GTM that uses a...
متن کاملMulti-view Discriminative Sequential Learning
Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences – such as the Baum-Welch algorithm – are available only for generative...
متن کامل